
International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Efficient Association Rule Mining Using Improved
Apriori Algorithm

Ish Nath Jha, Samarjeet Borah

Abstract— Association rule mining is a data mining technique to extract interesting relationships from large datasets [1, 2]. The efficiency

of association rule mining algorithms has been a challenging research area in the domain of data mining [3]. Frequent pattern discovery,

the task of finding sets of items that frequently occur together in a dataset is the most resource consuming phase of the rule mining

process [4, 5]. Efforts for improvement, in the basic mining techniques are continuously being made. In this paper we take the classical

algorithm APRIORI and optimize its performance by applying classification and sorting on the datasets.

Index Terms— Association Rule Mining, Data mining, Apriori Algorithm, Frequent Pattern Discovery, Efficiency.

—————————— ——————————

1 INTRODUCTION

ssociation rule mining is a widely used technique for
knowledge discovery from large data warehouses. Rule
mining algorithms find all interesting relationships in

large datasets by finding those itemsets that often co-occur
preferably indicating with what frequency. These frequent
itemsets are then used to generate association rules. The task
of finding frequent itemsets is most resource consuming
phase. The complexity has only increased with the growing
size of datasets. The idea of association rules was popularized
by the article published in 1993 by Rakesh Aggarwal. Since
then, association rule mining techniques have been at the core
of research in the area of Data Mining. Rule mining techniques
were initially applied for the popular market basket analysis
but now find applications in the areas of bioinformatics, geoin-
formatics, intrusion detection, web usage mining etc. The var-
ious areas of challenges in association rule mining are the in-
terestingness of rules discovered, mining rules from incremen-
tal database, scalability, memory efficiency, time complexity,
etc. Various algorithms have been proposed each with its own
merits and demerits over the others. APRIORI, proposed by R.
Aggarwal however remains the most popular algorithm and
all other algorithms exploit the basic underlying concept of
APRIORI. APRIORI has an aggressive search space pruning
strategy. Yet the support counting phase has a heuristic ap-
proach. It is due to the nature of representation of items and
transactions in the database.

In this paper the classical APRIORI has been chosen for the
experiment and a unique sorting technique along with cluster-
ing is used to arrange the datasets which drastically reduces
the number of comparisons made against the datasets to dis-
cover the rules. To do so the items and the transactions are
assigned numeric attributes which can be used to simply skip
some transaction during support counting phase.

2 BACKGROUND

2.1 Association Rule Description

An association rule can be explained as follows: Let I =
{i , i , i , … , i } be a set of different items, DB
= {T , T , T , … , T } be the transaction database consisting of
transactions, where each transaction T = {i , i , i , … , i } is a set
of elements from . Thus T ⊆ I. An association rule is then
specified as X ⇒ Y, where X ⊆ I, Y ⊆ I and X ∩ Y = Φ. All such
rules have two attributes associated with them, i.e. support
and confidence. Let be the percentage of transactions in DB
which contain X ∪ Y then is known as the support of X ⇒ Y.
Let be the percentage of transactions in DB containing
which also contain then the rule X ⇒ Y, holds with confi-
dence . Any statement of the form X ⇒ Y, is a rule if and only
if the support of and is greater than or equal to a user spec-
ified threshold value known as minimum support as well as
the ratio of support (X ∪ Y) ∕support (X) is greater than or
equal to user specified minimum confidence. Given any rule,
X ⇒ Y, is known as antecedent and is known as conse-
quent.

2.2 The Classical APRIORI Algorithm

The classical APRIORI algorithm generates association rules in

two steps:

i. By scanning the database iteratively to find the support count

of each K-itemset where = , , … , such that
 i i i . All those

itemsets whose support count is greater than or equal to the

user specified minimum support is known as a frequent

itemset. This phase is most resource consuming.

ii. Generate association rules from the frequent itemsets. For

every frequent itemset X, if X, Y Φ, and support (X) ∕

support (Y) minimum confidence, then Y ⇒ (X Y).

 ={ }

 ={ }

 (= Φ)

 = ()

 all transaction DB

A

————————————————

 Ish Nath Jha is currently pursuing M. Tech.in Computer Science & Engi-
neering from Sikkim Manipal University, Sikkim, India-737136. E-mail:
ish.jha@gmail.com

 Samarjeet Borah is currently working as Associate Professor in the De-
partment of Computer Science & Engineering at Sikkim Manipal Institute
of Technology, a Contituent College of Sikkim Manipal University, Sikkim,
India-737136. E-mail: samarjeetborah@gmail.com

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 = (,)

 all candidates

 = { }

 =∪ ;

The above stated algorithm can be explained as follows:
At first all the frequent 1-itemsets are found by simply

counting the support of each individual item in the transaction
database. This set is denoted by L . L is used to find L , the set
of all frequent 2-itemsets. This cycle continues until no more
frequent k-itemsets are found. At this stage the first step of
APRIORI algorithm stops. During every Kth cycle a set of
candidate K-itemsets, denoted by C is generated at first. Each
itemset in C is generated by joining two frequent itemsets
from L which have only one different item. The itemsets in
C are candidates for frequent K-itemset in L . Thus L is al-
ways a subset of C . The set C is pruned to retain those ele-
ments whose support count should be verified by scanning
the database. Pruning is an efficient method of removing all
those elements of C which can be declared a non frequent
itemset without scanning the DB. Pruning removes all those
itemsets of C whose any of the subset is not an element of
L . This is done on the basis that if some superset is frequent
then all its subset must be frequent as well.

The current research trend focuses on developing efficient
algorithms for generating the set of all frequent itemsets. In
the following section we discuss the problem of the existing
algorithm and the proposed improvement in the basic APRI-
ORI algorithm.

2.3 Related Work

Different optimization methods for association rule mining
have been proposed. The process is too resource-consuming,
especially when there is not enough available physical
memory for the whole database. A solution to encounter this
problem is to use evolutionary algorithms, which reduce both
cost and time of rule discovery. Yan proposed a method based
on genetic algorithm without considering minimum support
[7]. The method uses an extension of elaborate encoding while
relative confidence is the fitness function. A public search is
performed based on genetic algorithm. As the method does
not use minimum support, a system automation procedure is
used instead. It can be extended for quantitative-valued asso-
ciation rule mining. In order to improve algorithm's efficiency,
it uses a generalized FP-tree. Evaluation of the algorithm
shows a considerable reduction in computational cost. Kaya
proposed genetic clustering method in [8]. Hong proposed a
cluster based method for mining generalized fuzzy association
rules [9]. Chen proposed a cluster-based fuzzy-genetic mining
method for association rules and membership functions [10].
In many of these works clustering has been used to gain
speedup and improve the efficiency of the algorithm. In the
proposed work the idea of clustering is used without any evo-

lutionary algorithm.

2.4 Recent Advances

Since the publication of APRIORI many subsequent ideas
have been proposed and FP-Growth being one of them has
gained a lot of popularity. In the following section some litera-
ture survey is presented to explain why APRIORI was chosen
over FP-Growth for this work. Han introduces a quite novel
algorithm to solve the frequent itemset mining problem in [4].
They adapt the idea of a trie to the set of transactions rather
than candidates. In so doing, they effectively compress the
dataset D with the hope that it will fit entirely in main
memory. The data structure appears to eliminate the construc-
tion of candidates entirely. Experimental results have demon-
strated consistently that it significantly outperforms A Priori.
However, once the trie no longer fits in memory it suffers ex-
actly the same consequences as in [5]. Even building the trie
becomes extremely costly, to the point that in [6] it is re-
marked that the dominant percentage of execution time is that
of constructing the trie. Consequently, on truly large datasets,
the FPGrowth algorithm fails even to initialize.

When first introduced, it was remarked that the algorithm
scales quite elegantly. Indeed, if one has already constructed a
trie, then the cost of mining it is roughly the same independ-
ent of the support threshold (except that the recursion produc-
es more intermediate trees). However, one must be careful
here. FPGrowth has a preprocessing step that prunes out all
infrequent 1-itemsets prior to building the trie. Consequently,
it does not scale as claimed because as the support threshold is
lowered, the number of items pruned from the dataset de-
creases—and each of these newly unpruned items needs ap-
pear in the trie. So the trie needs to be reconstructed and it
grows. How much it grows is dependent on the distribution of
the dataset and the amount by which the support threshold is
reduced. This growth can be several orders of magnitude for
relatively small decreases in support threshold.

Furthermore, despite the claim that FPGrowth does not
produce any candidates, Goethals demonstrates in [11] that it
can, in fact, be considered a candidate-based algorithm and
Dexters later show that the probability of any particular can-
didate being generated is actually higher in FPGrowth than in
the classical A Priori algorithm [3].

Another general problem with the FPGrowth algorithm is
that it lacks the incremental behavior of A Priori, something
that builds fault tolerance into the algorithm. Should a ma-
chine running A Priori fail or shut down after producing, say,
its frequent 5-itemsets, the algorithm can be easily restarted
from that point by beginning with the construction of candi-
date 6-itemsets, rather than starting from the beginning. How-
ever, because FPGrowth operates by means of recursion, there
are very few points at which the program can save state in
anticipation of failure.

3 IMPROVED ALGORITHM

Problem Description: In order to confirm whether an itemset
of C after pruning is frequent or not its support is counted by
scanning the entire transaction database. This is a heuristic
approach. Such a heuristic approach is a necessity because of

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

the representation of the transactions in the DB. Moreover this
task has to be repeated for all the remaining itemsets of C
after pruning during each K-th cycle.

Basic Principle of improvement: We propose that each of
the element of the set I = {i , i , i , … , i } be assigned a unique
integer value in increasing order of enumeration so that each
transaction T = {i , i , i , … , i } can be given a value, say to-
tal_sum which would be equal to the sum total of values of
each individual element contained in T . At the same time dur-
ing the 1st cycle while counting the support of 1-itemsets we
increase the number of items represented by item_count of
each transaction by one if an item is present in that transac-
tion. Thus by the end of 1st cycle we will have two attributes
associated with each transaction namely total_sum represent-
ing a numeric value associated with each transaction and
item_count representing the number of items contained by
that transaction. Now all these transactions which have got
same item_count are grouped into one. So we get n-groups of
transactions where . Further the transactions within a
particular group are sorted on the basis of their total_sum val-
ue. The basic idea behind these computations is that any k-
itemset can be found in some transactions whose size is mini-
mum k. So while counting the support for any k-itemset we
will look into only those transactions belonging to some group
whose item_count is greater than or equal to the k and other
groups are ignored. The advantage of keeping the transactions
within a group in sorted order is that when we look for the
presence of an itemset within any group of transactions we
can ignore all those transactions whose total_sum value is less
than the sum total value of individual elements of the itemset.
The logic behind this is that we can also associate total_sum as
an attribute of any k-itemset of k items which will be equal to
the sum total of the numeric value of each individual item of
that set. And if some transaction of size m, where k con-
tains this k-itemset than the total_sum value of that transac-
tion will be greater than or equal to the total_sum value of the
k-itemset.

These computations performed on the dataset will incur
cost in terms of execution time however it is needed only once
during the 1st cycle and for all the subsequent cycle of support
counting its benefit is evident and can be summarized as fol-
lows.

Let TS represent the total_sum value of transaction T , C
be the total_sum value of some itemset and N be the size of
maximum sized transaction then the total number of compari-
sons for finding the support count of that itemset is:

∑ [𝑧 (())
 () -{ () <)}] (1)

4 IMPLEMENTATION AND RESULTS

APRIORI and the proposed modification both have been im-
plemented and then tested using a randomly generated syn-
thetic dataset. To generate a sample dataset, we have filled a
market basket dataset such a way that the value of each field
in each transaction is randomly generated. So, each field has a
50% chance to be true (i.e. a 50% chance to occur in each trans-
action).

To evaluate the support count of an itemset, the groups
having itemsets of size less than the number of items in the
itemset are ignored. The ratio of ignored transactions to total
number of transactions depends on the size of the itemset.
This ratio plays an important role in the performance (execu-
tion time) of the algorithm. The higher the ratio better is the
performance. Further some transactions within a particular
group are ignored if their total_sum value is less than that of
the itemset which adds to the performance of the algorithm. It
is verified with repeated experiments that for smaller support
threshold the new algorithm performs better. It is because the
probability of itemsets with larger number of items being fre-
quent increases and so the number of comparison increases for
the original APRIORI whereas in the modified APRIORI with
increased size of itemsets the chances of ignored groups of
itemsets also increases.

Fig. 1 shows a comparison between the numbers of com-
parison needed by APRIORI and modified APRIORI algo-
rithm for different number of transactions in the randomly
generated dataset. Fig. 2 compares the execution time of
APRIORI and modified APRIORI algorithm for different
number of transactions in the randomly generated dataset.
Fig. 3 compares the execution time for both the algorithms on
a dataset with 120000 transactions with different support
threshold values.

Fig. 1. Total Comparison with Different Number of Transaction in the

Randomly Generated Dataset

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

4 CONCLUSION

In this work the basic APRIORI has been optimized for discover-
ing association rules from large data warehouses. The proposed
method is to cluster transactions with equal number of items into
one and further sort the transactions within each cluster. This
approach leads to avoiding of some dispensable comparisons
against the database. It is due to the fact that certain itemsets are
impossible to occur in many clusters and even in many transac-
tions. We obtained a speedup of 12.9% and a decrease of 11% in
the number of comparison. This work can further be extended to
obtain negative association rules, and some computational meth-
od can be created to avoid making comparisons at all for generat-
ing rules from the data warehouses.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules be-

tween sets of items in large databases,” in Proc. of the 1993 ACM SIGMOD In-

ternational Conference on Management of Data, Washington, D.C., May 26-

28, 1993. ACM Press, 1993, pp. 207–216.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in

Proc. of VLDB, 1994, pp. 487–499.

[3] N. Dexters, P. W. Purdom, and D. Van Gucht, “A probability analysis for

candidate-based frequent itemset algorithms,” in SAC ’06. New York, NY,

USA: ACM, 2006, pp. 541–545.

[4] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate genera-

tion,” in SIGMOD Conference. ACM, 2000, pp. 1–12.

[5] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset counting

and implication rules for market basket data,” SIGMOD Rec., Volume. 26, no.

2, pp. 255–264, 1997.

[6] G. Buehrer, S. Parthasarathy, and A. Ghoting, “Out-of-core frequent pattern

mining on a commodity pc,” in KDD ’06: Proceedings of the 12th ACM

SIGKDD international confer- ence on Knowledge discovery and data min-

ing. New York, NY, USA: ACM, 2006, pp. 86–95.

[7] X. Yan, “Genetic algorithm-based strategy for identifying association rules

without specifying actual minimum support”, Expert Systems with Applica-

tions, Volume 36, Issue 2, pp: 3066-3076 (2008).

[8] M. Kaya, R. Alhajj, “Genetic algorithm based framework for mining fuzzy

association rules”, Fuzzy Sets and Systems 152:3, pp 587-601 (2005).

[9] B. C. Chien, Z. L. Lin and T. P. Hong, “An efficient clustering algorithm for

mining fuzzy quantitative association rules”, The Ninth International Fuzzy

Systems Association World Congress, pp. 1306-1311 (2001).

[10] C.H. Chen, V.S. Tseng, T.P. Hong, “Cluster-Based Evaluation in Fuzzy-

Genetic Data Mining”, IEEE T. Fuzzy Systems 16(1): 249-262 (2008).

[11] B. Goethals, “Efficient frequent pattern mining,” Ph.D. dis-sertation, transna-

tionale Universiteit Limburg, 2002.

[12] Sean Chester, Ian Sandler, Alex Thomo: Scalable APRIORIBased Frequent

Pattern Discovery. CSE (1) 2009: 48-55

Fig. 2. Execution Time with Different Number of Transaction
in the Randomly Generated Dataset

Fig. 3. Execution Time with Different Threshold Values 120000

Transactions from the Randomly Generated Dataset

